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Towards a Complex Variable

Interpretation of Peirce’s Existential

Graphs

Fernando Zalamea
Universidad Nacional de Colombia

1. Background

Peirce’s existential graphs were introduced in the period 1890–1910, as al-

ternative forms of logical analysis. The three basic characteristics of the

graphs lie in their specific ways to transfer logical information: diagram-

matic, intensional, continuous. Peirce’s systems of existential graphs contrast

thus with the usual logical systems, whose algebraic, extensional and dis-

crete emphases are closer to the specific conceptual combinatorics of set

theory.

For almost a century, Peirce’s graphs were forgotten, and only began

to be studied again by philosophy Ph.D. students oriented towards logical

research. Roberts (1963) and Zeman (1964) showed in their dissertations

that Peirce’s systems served as complete axiomatizations for well-known

logical calculi: Alpha equivalent to classical propositional calculus, Beta

equivalent to first-order logic on a purely relational language, fragments of

Gamma equivalent to propositional modal calculi between S4 and S5. On

another path, Burch (1991) showed that a relational fragment of Beta rep-

resented a genuine intensional logico-topological calculus, not reducible to

an extensional relational calculus inside set theory.

The “standard” presentations of the graphs (see for example Roberts,

1973; Shin, 2002) have underlined the visual interest of the systems, but

have just emphasized their originality as a diagrammatic language. The

combinatorial syntax of the graphs has been described recursively in
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Shin (2002), and a classical semantical interpretation has been proposed

in Hammer (1998). On the other hand, the topological potentialities of the

graphs were explored in Kauffman (2001), and their ties with game theory

were studied in Pietarinen (2006).

Nonetheless, the profound connections of the graphs with central areas

in mathematics have just beginning to be unravelled, thanks to two ground-

breaking papers by Geraldine Brady and Todd Trimble. Inserting the

graphs in the context of monoidal categories,1 Brady & Trimble (2000a) have

showed that (a) every Alpha graph gives rise to an algebraic operation in

an algebraic theory in the sense of Lawvere (a particular case of a monoidal

category); (b) Alpha’s deduction rules can be obtained through factoriza-

tion of “forces”.2 These are important results which open the way to a

new combinatorial handling of the graphs, profiting from advanced tech-

niques in categorical logic (Borceux, 1994; Jacobs, 1999). On the other hand,

Brady & Trimble (2000b) have indicated how to represent Beta graphs by

means of a category-theoretic relational calculus associated to a first-order

theory. The representation does not use Freyd’s allegorical calculus, nor

Lawvere’s hyperdoctrines, but a medium-complexity representational cal-

culus, with “logical functors” which create quantifiers and which verify

a “Beck-Chevalley” condition.3 The free relational category which allows

the representation is put in correspondence with a (monoidal) category of

chord diagrams, using ideas from Joyal & Street (1991).

In spite of the preceding work, the advances obtained in a mathemati-

cal understanding of Peirce’s graphs do not contemplate two of their main

features: intensionality and continuity. The combination of the intensional

1 Monoidal categories are categories equippedwith a tensor functor, thanks to which a nat-

ural notion of abstract monoid can be defined. Monoidal categories are ubiquitous: cartesian

categories (in particular, the category of sets), free word-category over any category, endo-

functors category over any category, category of R-modules over a commutative ring R, etc.

The abstract monoids definable in the monoidal category incarnate in the usual monoids,

triples (or monads), R-algebras, etc.
2 Given a monoidal category C with tensor product ⊗, and given a contravariant functor

F :C → C, a force for F is a natural transformation θab: F (a) ⊗ b → F (a ⊗ b). The forces,

introduced by Max Kelly in the 1980’s to solve difficult coherence problems (reduction of

the commutativity of an infinity of diagrams to the commutativity of finite of them), have

emerged afterwards in domains farther apart: curvatures in grassmannians, sub-riemannian

geometry, weak forces in subatomic physics, counting operators in linear logic, etc. Here, the

forces appear in another unexpected context: intuitionistic logic and existential graphs.
3 Beck-Chevalley is a categorical expression of the syntactical idea that substitution of

bound variables does not affect a logical formula. It corresponds to type uniformization in

rewriting rules, and it also appears in mathematics around ideas of uniformization in some

classes of algebras (algebraic groups: Chevalley; algebraic functors: Beck).
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character of the graphs, expressed by the fact that an Alpha cut around p

is just the opposite4 of a Venn (extensional) diagram around p, and of its

topological character, expressed through the continuity calculus (iterations

and deiterations) of the line of identity, show that Peirce’s graphs should

be closer to a logic akin to intensional and topological considerations, that

is, in fact, closer to intuitionistic logic (on this, the forthcoming papers Oos-

tra (2011) and Zalamea (2011) should produce new lights).

On the other hand, if one considers the continuous plane where evolves

Beta information, and the book of sheets where may evolve Gamma infor-

mation, one can see that Peirce’s graphs may be treated with some tools

of complex analysis: residues for Alpha, analytic continuation for Beta, Rie-

mann surfaces for Gamma. Moreover, since one of the natural models for

the logic of sheaves (see Caicedo, 1995) is the fibration of germs of analytic

functions, a natural connection between existential graphs and the logic of

sheaves should emerge. In this case, Peirce’s existential graphs would en-

ter into the very core of mathematical knowledge, and could even help to

understand the elusive “logic of complex variables”.5

In the remaining parts of this paper, we provide some advances, but

mostly guesses and conjectures, around what has been announced in our

last paragraph.

2. A complex variable interpretation of Peirce’s graph

The usual model for Peirce’s Alpha and Beta graphs is imagined as a “sheet

of assertion”, where, on one hand (Alpha), nested cuts are marked in or-

der to represent combinations of classical propositional formulas built on

negation (“cut”) and conjunction (“juxtaposition”), and, on the other hand

(Beta), continuous lines are marked in order to represent existential quan-

tification. In this modus of representation, a superposition between conti-

nuity (Beta) and discontinuity (Alpha) is essential for the good sake of the

calculus: while Alpha is restricted to non over crossing, nested diagrams,

Beta requires crossing, not nested diagrammatical procedures to obtain its

full capability of representation. In fact, all the power of the line of identity

4 If a graph of the form p q represents in Peirce’s view the implication p → q,

the Venn extensional reading of the diagram produces exactly the opposite inclusion (impli-

cation): {x : q} ⊆ {x : p}.
5 The stability of the complex additive-multiplicative plane (C, +, . , 0, 1) has been a source

of many developments in model theory. On the other hand, the instability of the complex

exponential is now under careful study (Zilber) and may hold some of the profound secrets

of the logic of complex variables.
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(the continuous line which represents existential quantification) rests in its

ability to cross Alpha cuts, since the iterations and deiterations of the line

correspond precisely to the use of normal forms in the associated underlying

first-order logic.

This Beta superposition or crossing has not been sufficiently consid-

ered in its full, central, importance for the machinery of the graphs. If one

would take it seriously, it would lead to (i) a study of the forms of continu-

ity (Beta) and discontinuity (Alpha) present on the sheet of assertion, and,

more significantly, to (ii) a study of forms of logical transfers (possibilities

of proofs) and obstructions (impossibilities of proofs) as forms of topolog-

ical transfers (continuations) and obstructions (singularities). In a sense, this

would lead then to a sort of homological bridging between the logical and

the topological, but in an inverse way to the direction that usual homologi-

cal machineries are produced.6

If the sheet of assertion is viewed as an infinite plane, the usual under-

standing of the sheet identifies it with the cartesian plane R
2, an identifi-

cation which helps to understand program (i) just indicated. But then, the

topological transformations of the plane R
2, viewed as transformations of

two real variables, are highly artificial, fortuitous, hazardous – far from

being “tame” in Grothendieck’s sense –, and it would be very astonishing

that the natural, universal, structural, logical calculi encoded in the graphs

could be surfacing in some real variable calculations. Another completely

different perspective is obtained if we view the infinite sheet of assertion as

the complex plane C. If, extensionally, looking just as sets, the cartesian

plane R
2 and the complex plane C are identical, intensionally, with their

extremely different calculi of real variables and complex variables, the two

planes differ in profound ways. Since the graphs do involve intensional

logical information, it seems from the outset that the distinction may be

fruitful. We will see that many additional technical ingredients support

this view.

Program (ii) may in fact be well-founded on the theory of functions of

complex variable. The analytical (also called holomorphic) functions can

be described both locally (through power series expansions: Weierstrass)

6 A homology is usually constructed to be able to understand the topological through the

algebraic: given a topological space, a homology for the space is a chain of abelian groups

which captures parts of the continuous information (deformations) of the initial space. A

cohomology of the space is a homology with the order of the chain reversed, which gives rise

to easier constructions in the chain: pullbacks, products, etc. In our proposal, instead of

evolving from topological data, we would be going towards the topological, profiting in first

instance from the known logic behaviour of the graphs (Roberts, 1963; Zeman, 1964).
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and globally (through elliptic partial differential equations: Cauchy, Rie-

mann), and the good solidarity between the local and the global explains

their excellent (not artificial, not fortuitous, not hazardous) behaviour.

Many technical accomplishments in the theory express this solidarity. A

qualitative breakthrough is obtained when we observe, not only the recto

of the analytical functions, but also its verso: the meromorphic functions,

which are analytical functions with (well controlled) singularities. Two

main results which express the transitions between the holomorphic and

the meromorphic are particularly important in our perspective: analytical

continuation and Cauchy’s residues theorem. An analytical continuation

allows to extend (“iterate”) a given analytical function (on a well-behaved

region of the plane C) to a meromorphic function (over a larger region,

with singularities allowed). Cauchy’s theorem allows expressing the value

of an analytical function at a given point, through the calculation of val-

ues (“residues”) of a small meromorphic variation of the function in the

boundary of a region enclosing the point (for details and a wonderful dia-

grammatical presentation, see Needham (2004)).

As can be guessed from the preceding discussion, the recto and verso of

Peirce’s sheet of assertion may be modelled by the analytical realm and the

meromorphical realm on the complex plane. This allows to model the discon-

tinuous Alpha cut (which, in Peirce’s original intuition, allows to pass from

the recto to the verso of the sheet) as a (complex variable discontinuous)

operation which allows to pass from analytical functions to meromorphic

functions. Examples of such operations abound (the most natural being

f (1/z) or 1/f (z), which produce natural meromorphic functions associated

to the analytical f (z)), and a specific choice of the operation depends on

the additional Alpha rules that are required on the cut. Juxtaposition can

also be modelled in different ways, for example through the product of

functions, or through the product of its exponentials (exp(f + g)). Truth

(“blank” in the recto) can be modelled by some sort of “smoothest” analyt-

ical function, for example exp(z), and Falsity (“pseudograph” in the verso)

by some sort of “wildest” meromorphic function, for example exp(1/z)7.

7 The singularities of the meromorphic functions are usually controlled by their negative

degrees in power series expansions; if the degree is finite, the singularity is called a pole; if the

degree is infinite, the singularity is called an essential singularity. The meromorphic function

exp(1/z) possesses an essential singularity at 0. An outstanding theorem in the theory of func-

tions of complex variable (Picard’s big theorem) asserts that exp(1/z) attains all values (except

at most one) in C, an infinite number of times, around any neighborhood of 0, however small.

This extreme meromorphic behaviour can thus be very well related to Falsity. Between the

extremes (Truth – Falsity), that is between exp(z) and exp(1/z), lies a profound hierarchy of
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Alpha erasure (on a recto side inside a nest) corresponds to an identifica-

tion of a product of analytical functions with an analytical one, while Alpha

insertion (on a verso side) corresponds to the identification of a product of

analytical and meromorphic with meromorphic. Finally, one can conjec-

ture that the fundamental8 Alpha iteration and deiteration rules originate

a calculus of homotopy classes which is yet to be precisely explored.

The heuristics behind a complex variable interpretation of Beta depends

on the understanding of the iteration of the line of identity across Alpha cuts

as an analytic continuation of the line in the complex plane. The geomet-

rical insight seems to be the correct one, since analytical complex continua-

tion is precisely a specific procedure to pass from the analytical realm to the

meromorphical realm, in perfect analogy with the procedure of extending

the line of identity from regions with less cuts (“more” analytical) to re-

gions with more cuts (“more” meromorphic). Here, the conjecture is that

some (complex variable, topological) calculi related to analytical continua-

tion may capture the (logical) deformations of the line of identity. A guide

to a formalization of these calculi may be provided by Cauchy’s residues

theorem, if one can interpret a (logical) region with an Alpha cut as a

(complex variable, topological) region with a pole. The lines of identity

can then be modelled by affine bounded linear functions, and their cross-

ings through Alpha cuts as meromorphic deformations of the line near the

poles attached to the cuts. Then, on one hand, a calculus of singularities

(residues) may provide a discrete rendering of the nested Alpha cuts, and,

on the other hand, the Beta iteration of the lines of identity may be related

to their analytical continuation around the boundaries of the regions with

prescribed poles.

Going beyond classical first-order logic, Peirce’s Gamma graphs help

to diagram modal calculi. Peirce imagined two completely original ways

to picture the modalities: using “tinctures” on the sheet of assertion, or

constructing a “book of sheets” to enlarge our possible worlds. Since (an

adequate) modal propositional logic is known to be equivalent to monadic

first-order classical logic (modalities represented by monadic predicates),

the spreading of regions (that is, extensions of predicates) in the complex

analytical and meromorphic functions which should be used to model a logic of continuous

truth-values beyond the classical discrete dichotomy. For a discussion of the philosophical

issues that hinder our understanding of the passages between the continuous and the dis-

crete, and for a study of the role of the existential graphs to facilitate that understanding, see

Zalamea (2007).
8 Caicedo has shown that iteration/deiteration is the fundamental adjointness that defines

a general intuitionistic connective. See Caicedo & Cignoli (2001).
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plane may then help to understand the hierarchy of modalities. Thus, be-

yond iterating the lines of identity (Beta), a spreading of regions (Gamma)

encompasses some valuable underlying logical information, usually not

considered. Here, in the theory of complex variables, many tools are avail-

able for the understanding of those “spreadings”, and a connection be-

tween the logical aspects of the situation (modalities) and its geometric

ones (representations, modulations, modularities) could provide astonish-

ing new perspectives.

But perhaps the most promising path in the unravelling of a global

complex variable interpretation of the graphs lies in interpreting Peirce’s

“book of sheets” as a full Riemann surface.9 Beyond the discrete interpre-

tation of the “book of sheets” as a Kripke model, on which the modal-

ities receive their usual possible worlds semantics, the interpretation of

the Book as a continuous Riemann surface provides many additional ad-

vantages. First, the Riemann surface unifies in a single mathematical object

the various partial complex variable models for Alpha, Beta and Gamma.

Second, a Riemann surface inherits a calculus of projections (see figure 1)

which expresses, with new mathematical content, some logical correlations

between propositional, first-order and modal levels. Third, a Riemann sur-

face is a natural context for blowing up10 in fibrations (see Petitot, 2003),

which corresponds to constructing infinitesimal disks around blowed-up

9 The concept of a Riemann surface (1851) answers in technical terms, in the complex vari-

able situation, the general (philosophical) problem of glueing a Multiplicity into the One. In

simple terms, the basic idea beyond a Riemann surface consists in representing a multivalent

algebraic relation r(z, w) = 0 between a complex variable z (in the domain of the relation)

and a complex variable w (in its codomain), thanks to a covering of the complex plane by a

pile of planes, corrugated and holomorphically “glued”, that represent the different possible

values of w for given values of z. If, for a given z0, the equation r(z0, w) = 0 has n roots,

then n corrugated planes emerge (“sheets” of the Riemann surface) that cover the z-plane in

a neighborhood of z0. For some exceptional values of z (“ramification points”), the sheets are

fused when the roots coincide, and the local expansions of w behave as fractionary powers of

z (corresponding to the algebraic resolutions of the relation). Using the representations of the

relations w = zn/m all usual Riemann surfaces (compact and oriented) can then be classified.

Instead of working with the usual complex plane C, it is easier to handle the projective plane

P (adding a point at infinity), and, in that case, the Riemann surface of w = z1/2 is home-

omorphic to a sphere, while the Riemann surface of w = z3/2 is homeomorphic to a torus.

For a modern introduction (accessible and complete) to Riemann surfaces, see Fulton (1995),

part X (“Riemann surfaces”), pp. 261-311.
10 Blowing-up is a process to eliminate singularities in singular curves, introduced in pro-

jective algebraic geometry at the beginning of XXth century. If a curve in the complex plane

possesses a singular point with ramification (different tangents at the point), the ramification

comes to be separated in the blowing-up, and in the associated fibration the singular crossing

is overcome.
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points (an idea of Cartier), which in turn may correspond to infinitesimal

spreadings of modal (that is, monadic first-order) properties.

Last but not least, the Riemann surface interpretation supports the un-

derstanding of logic that has emerged in the second part of XXth century.

In fact, if a logic must be understood as a class of structures (Lindström)

for which some logical axiomatizations serve as coordinatizations, and if

the work of the contemporary logician lies in her tendency to look for fine

invariants for classes of models (Shelah, Zilber), the unravelling of some

mathematical calculi behind logical representations (as the complex vari-

able calculi here suggested) explains also the precedence of the geometrical

under the logical: a feature that Peirce constantly advocated, and that model

theory and category theory are now proving with an extended range of

new tools.

Figure 1: A Riemann surface for an existential graph

3. A category-theoretic perspective

The correspondence between the sheet of assertionwith its logical transfor-

mations (codified in Alpha, Beta, Gamma) and the complex plane with its

meromorphic transformations (along residues, analytic continuation and

Riemann surface projections) is constructed over a deeper level of logi-

cal/topological correspondences, which becomes explicit when the logical

viewpoint becomes intuitionistic. In fact, on the one hand, from a logical
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perspective, Peirce’s graphs, which were constructed classically,11 can be

better understood intuitionistically (Oostra, 2011). And, on the other hand,

from a topological perspective, the graphs capture some continuous com-

binatorics that cannot be reduced to discrete ones (Burch, 1991).12 Thus,

the natural surrounding where the graphs evolve is intuitionistic, both for

logical and topological reasons.13

Brady& Trimble (2000a; 2000b) propose fine categorical models for clas-

sical Alpha and Beta, but nothing in their construction prevents to extend

their ideas to the intuitionistic case (Zalamea, 2011). The boolean functors

appearing in the proofs can be modified, and, instead of working in the

category of Boolean algebras, their targets can be redirected to take values

into three alternative categories: (a) the category of Heyting algebras (nat-

ural algebraic models for intuitionism), opening the way to intuitionistic

fibrations; (b) the category of Stone spaces (natural topological models for

intuitionism andmodalities), opening the way to topological fibrations; or,

(c) the category of subalgebras of meromorphic functions, opening the way

to complex variable fibrations.

A functorial approach to these three alternatives, looking for their cat-

egory-theoretic connections, is also related to the understanding of the in-

trinsic logic of sheafs of germs of holomorphic functions, a particular case

of the logic of sheaves of first-order structures studied in Caicedo (1995).

Caicedo has shown in fact that the logic of sheaves is intrinsically intuition-

istic, and that it becomes classic only on very particular cases, depending

on the structures at hand. In the case of the monoidal category of alge-

braic operators studied by Brady & Trimble, the sheafs definable over its

natural site (in Grothendieck’s sense) should turn out to be intuitionistic

(Zalamea, 2011).

11 Peirce’s construction of the graphs is classical, mainly because classical logic was the logic

emerging in Peirce’s time (the influence of De Morgan on Peirce was determinant, for exam-

ple, and De Morgan laws are a classical paradigm). Nevertheless, beyond the diachronic

moment, Peirce’s natural interest for a logic akin to topological considerations (continuity,

synechism, neighborhoods, modalities) is permanent in his writings (see Havenel, 2006; Za-

lamea, 2001; 2003), and, in fact, well-behaved intuitionistic diagrams (without the name, but

including the spirit) appear explicitly in Peirce’s handwriting (see Oostra, 2011).
12 Peirce’s theorematic “reduction thesis” (as proved by Burch), with his need of the three cat-

egories, shows that the relational bonding of the graphs cannot be treated just as set-theoretic

composition (where, using Kuratowski pairs, only two categorical levels are needed to repro-

duce the third).
13 Since Tarski’s Polish years, it is well known that the collection of opens sets in a topology

is a sound and complete model for the intuitionistic propositional calculus. Lawvere showed

many years later that the natural underlying logic of an elementary topos is also intuitionistic.
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In that case, a full circle of natural conceptual approaches to Peirce’s graphs

would then be achieved, merging together the logical-topological-analyti-

cal-categorical, and inserting Peirce’s graphs in the very core of mathemat-

ical knowledge (sheaf theory and complex analysis).14

Departamento de Matemáticas

Universidad Nacional de Colombia
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